The Crystal Structure of bis-Ethylenethiourea-Cadmium Thiocyanate

By Luigi Cavalca, Mario Nardelli and Giovanna Fava
Structural Chemistry Laboratory, Institute of Chemistry, University of Parma, Italy

(Received 5 June 1959)
bis-Ethylenethiourea-cadmium thiocyanate crystallizes in the monoclinic system and is isostructural with the corresponding lead compound. The cell dimensions are:

$$
a=15.60 \pm 0.04, b=8.17 \pm 0.02, c=11.51 \pm 0.01 \AA ; \beta=95^{\circ} 41^{\prime} ;
$$

Abstract

the number of formula units per unit cell is 4 and the space group is $C_{2 h}^{6}-C 2 / c$. The structure has been solved by two-dimensional Patterson and Fourier syntheses, and refinement has been carried out with generalized projections of partial differences and back-shift corrections. The cadmium atom coordinates octahedrally with two sulphur atoms attached to ethylenethiourea molecules, and with two sulphur and two nitrogen atoms in four different NCS groups. The coordination polyhedra are therefore linked in chains by these NCS groups, which form bridges between cadmium atoms.

1. Introduction

The study of the structure of bis-ethylenethioureacadmium thiocyanate,

$$
\operatorname{Cdet} u_{2}\left(\mathrm{NCS}_{2} \quad\left(e t u=\mathrm{SC}\left(\mathrm{NHCH}_{2}\right)_{2}\right)\right.
$$

is part of an extensive series of research with the object of finding the nature of the coordination compounds formed by divalent cations and organic molecules containing sulphur. The thiocyanates of divalent metals form with thiourea $\left(t u=\mathrm{SC}\left(\mathrm{NH}_{2}\right)_{2}\right)$ and ethylenethiourea two series of compounds:

$$
M e^{\mathrm{II}} t u_{2}(\mathrm{NCS})_{2}, M e^{\mathrm{II}}=\mathrm{Mn}, \mathrm{Co}, \mathrm{Ni}, \mathrm{Cd}
$$

(Nardelli, Braibanti \& Fava, 1957) and

$$
M e^{\mathrm{II}} e t u_{2}(\mathrm{NCS})_{2}, M e^{\mathrm{II}}=\mathrm{Mn}, \mathrm{Co}, \mathrm{Ni}, \mathrm{Cd}, \mathrm{~Pb}
$$

(Nardelli \& Chierici, 1958). The thiourea compounds are all isostructural and triclinic and are characterized by a particularly small value of a translation identity period ($a \sim 3.9 \AA$). On the contrary, the ethylenethiourea compounds crystallize in two different systems: the compounds with $\mathrm{Mn}, \mathrm{Co}, \mathrm{Ni}$ are triclinic, whilst those with Cd and Pb are monoclinic. None of the ethylenethiourea derivatives has a translation period near $4 \AA$.
bis-Ethylenethiourea-cadmium thiocyanate and the isostructural lead compound have the following lattice parameters:

$$
\begin{array}{ll}
\operatorname{Cdetu}_{2}(\mathrm{NCS})_{2}: & \\
\begin{aligned}
a=15 \cdot 60 \pm 0 \cdot 04, & b=8.17 \pm 0 \cdot 02, c=11.51 \pm 0.01 \AA \\
& \beta=95^{\circ} 41^{\prime} . \\
\mathrm{Pbetu}_{2}(\mathrm{NCS})_{2}: & \\
a=16 \cdot 25 \pm 0 \cdot 02, & b=7.94 \pm 0 \cdot 01, c=11.95 \pm 0.02 \AA \\
& \beta=93^{\circ} 8^{\prime} .
\end{aligned}
\end{array}
$$

The unit cells contain $Z=4$ formula units. The space
groups consistent with the observed extinctions are $C_{2 h}^{6}-C 2 / c$ and $C_{s}^{4}-C c$.

2. Experimental

The usual habit of Cdetu ${ }_{2}(\mathrm{NCS})_{2}$ crystals, obtained by slow recrystallization from alcoholic solution, was prismatic, showing the $\{100\},\{110\}$, and $\{001\}$ forms and being elongated along [001]. It was therefore easy to obtain a nearly cylindrical sample around [001] (cross-sectional dimension $\sim 0.25 \mathrm{~mm}$.) by rubbing with a wet filter paper. This sample was used for taking integrated Weissenberg photographs (Wiebenga \& Smits, 1950) of $h k 0$ and $h k 1$ reflexions. The same technique was used to obtain photographs of the $h 0 l$ and $h \mathrm{l} l$ reflexions from a nearly spherical sample (mean diameter 0.30 mm .). All photographs were taken with the multiple-film method ($\mathrm{Cu} K \alpha$-radiation, 120 hr . exposure time). The intensity determinations were carried out photometrically on 107 h 0 l , $173 \mathrm{hll}, 65 \mathrm{hk} 0$, and 113 hkl (out of a possible 113 h 0 l , $233 h 1 l, 91 h k 0$, and $157 h k 1$) reflexions. The corrections for polarization and Lorentz factors were made by means of a Cochran (1948) chart. Absorption corrections ($\mu=177 \mathrm{~cm} .^{-1}$) were made assuming a cylindrical or spherical sample, but secondary extinction was not taken into account.

The relative values of $F_{o}^{2}(h 0 l)$ and $F_{o}^{2}(h k 0)$ were put on an absolute scale by the Wilson (1942) method. A first scaling factor for $F_{o}^{2}(h l l)$ was obtained by comparison of the $h 10$ reflexions with the same ones present in the $h k 0$ photograph; $F_{o}^{2}(h k l)$ were likewise scaled using $h 11$ reflexions. A first mean temperature coefficient was $\bar{B}=2.0 \AA^{2}$. Scaling and mean temperature factors were improved by graphical comparison of F_{o} and F_{c} values for the reflexions of each photograph. Finally an isotropic temperature correction was determined for each kind of atom by a least-

Fig. 1. Patterson projections: (a) $P(U, W), \quad(b) P(U, V)$. Contours at arbitrary intervals.
squares method (Cochran, 1951). The final values were $2 \cdot 1 \AA^{2}$ for Cd and $2 \cdot 8 \AA^{2}$ for all the other atoms.

3. $P(U, W)$ and $P(U, V)$ projections

The unit cell contains four molecules of $\operatorname{Cdetu}_{2}\left(\mathrm{NCS}_{2}\right.$, and so the cadmium atom must be located on one of the five special positions of the $C_{2 h}^{6}$ space group or in the general position of the C_{s}^{4} space group. Examination of the $P(U, W)$ Patterson projection (Fig.l $(a))$ cannot distinguish between these possibilities as the $\mathrm{Cd}-\mathrm{Cd}$ interactions occur only at the origin peak. On the other hand, in the $P(U, V)$ projection (Fig. $1(b)$) the $C(U=0, W=0 \cdot 116)$ peak (due to the $\mathrm{Cd}-\mathrm{Cd}$ interaction) shows that the Cd atom, having a degree of freedom in the y direction, must be in the $e\left(0, y, \frac{1}{4}\right)$ position of the $C_{2 h}^{6}$ space group or in the general position of the C_{s}^{4} space group. In this latter case there is no crystallographic equivalence between atoms which are probably chemically equivalent. Considering this, the $C_{2 h}^{6}$ space group was chosen as a starting point and this choice was later found to be correct.

The A, D and B, E peaks in the two Patterson projections were interpreted as due to the $\mathrm{Cd}-\mathrm{S}_{\mathrm{I}}$ and $\mathrm{Cd}-\mathrm{S}_{\text {II }}$ interactions respectively. The other peaks involving lighter atoms were not taken into account.

The coordinates obtained from Patterson projections were:

	x / a	y / b	z / c
Cd	0	0.058	0.250
$\mathrm{~S}_{\mathrm{I}}$	0.034	0.309	0.109
$\mathrm{~S}_{\text {II }}$	0.154	0.058	0.358

4. Fourier projections and refinements

The first $\varrho_{0}(X, Z)$ projection was obtained using the signs of the structure factors calculated by considering the heavier atoms only. As the peaks of the lighter atoms were unresolved, it was impossible to find the orientation of the organic molecule and of the NCS group. It therefore appeared convenient to consider the generalized projections $S_{1}(X, Z), C_{1}(X, Z)$ and $\varrho_{1}(X, Z)=\left[S_{1}^{2}+C_{1}^{2}\right]^{\frac{1}{2}} ;$ the last was also combined with
the $\varrho_{0}(X, Z)$ projection. From S_{1} and C_{1} projections y coordinates were obtained too.

From these projections it was possible to distinguish the light atoms of the organic molecule, which was found to be completed by the $S_{\text {II }}$ sulphur atom. Carbon and nitrogen atoms of the NCS group were superimposed on two S_{I} atoms symmetrically placed with respect to the origin, and so at this stage they were ignored. Reliability indices were $R(h 0 l)=0.214$, $R(h 1 l)=0.213$.

A successive series of the same projections was calculated, subtracting out the cadmium and sulphur contributions, and this series was then used to locate the carbon and nitrogen atoms of the NCS group and to improve the coordinates of the other light atoms. The new R factors were $R(h 0 l)=0 \cdot 196, R(h 1 l)=0 \cdot 142$. Little further improvement of coordinates was obtained recalculating the projections either with all the light atoms contributions or with the sulphur contributions alone.
$\varrho_{0}(X, Y), \varrho_{1}(X, Y)$ and $\left\{\varrho_{0}+\varrho_{1}\right\}(X, Y)$ were also calculated at this stage, but, owing to the extensive overlapping of the light atoms, they were used only to control the x and y coordinates of heavier atoms obtained from (X, Z)-projections. The final $\varrho_{0}(X, Y)$ projection (Fig. 3(b)) shows that all the light atoms lie on high electron-density regions.

The $S_{1}(X, Z)$ and $C_{1}(X, Z)$ final projections are shown in Fig. 2(a), (b); Fig. 3(a) represent the corresponding $\varrho_{1}(X, Z)$ projection. As a further refinement isotropic thermal factors were calculated for each atomic kind and back-shift corrections for finite-series errors were applied. At the end of these refinements the R factors (for observed reflexions only) were:

$$
\begin{array}{ll}
R(h 0 l)=0 \cdot 165, & R(h 1 l)=0 \cdot 109 \\
R(h k 0)=0 \cdot 232, & R(h k l)=0 \cdot 151 .
\end{array}
$$

In Table I the observed structure factors are compared with those calculated.

5. Atomic coordinates and accuracy

The final coordinates are shown in Table 2. The $x / a, y / b, z / c$ values are referred to monoclinic axes with

Table 1. Observed and calculated structure factors

k 1
$\left|F_{0}\right| \quad F$

$$
\begin{aligned}
& 0 \\
& 0
\end{aligned}
$$

F_{c} \square F_{c}

$$
\begin{aligned}
& \vec{\nu} \\
& \stackrel{\rightharpoonup}{2}
\end{aligned}
$$

$$
\overline{1} \quad 1
$$

$$
\begin{array}{lllllll}
-1 & - & - & - & - & - & - \\
\hdashline & 0 & - & \infty & 0 & - & N
\end{array}
$$

$$
\left|F_{o}\right|
$$

$$
\mathrm{F}_{\mathrm{c}}
$$

Bis mbsi

Fig. 2. (a) $S_{1}(X, Z),(b) C_{1}(X, Z)$. Contour interval 2 e. \AA^{-2} in light atoms, and arbitrary in others, starting from 3 e. \AA^{-2}. Negative contours broken and zero contour omitted. The symbols primed indicate the atoms related to those in x, y, z by $\overline{1}$ or 2_{1}.

Fig. 3. (a) $\varrho_{1}(X, Z)$, (b) $\varrho_{0}(X, Y)$. Contour invervals as in Fig. 2.
the origin at the centre of symmetry. The $x^{\prime}, y^{\prime}, z^{\prime}$ coordinates are referred to orthogonal axes a^{\prime}, b, c, with a^{\prime} being taken perpendicular to the b and c crystal axes, so that

$$
x^{\prime}=x \sin \beta, y^{\prime}=y, z^{\prime}=z+x \cos \beta .
$$

The standard deviations of the atomic coordinates of the Cd and S atoms were estimated by Cruickshank's (1949) method from $\varrho_{1}(X, Z)$ for $\sigma(x)$ and $\sigma(z)$ and from $\varrho_{0}(X, Y)$ for $\sigma(y)$. For the light atoms $\sigma(x)$ and $\sigma(z)$ were found in the same way, and $\sigma(y)$ was obtained using the relation (Bryden, 1958)

$$
\sigma\left(y_{r}\right)=\{b / 2 \pi A\}\left\{\Sigma(\Delta F)^{2}\right\}^{\frac{1}{2}} /\left(\varrho_{1}\right)_{r},
$$

where A is the area of the cell projection, and $\sigma(\Delta F)^{2}$ is taken over all the $h \mathrm{l} l$ observed reflexions.

The mean values of the standard deviations were:
$\operatorname{Cd}-\sigma(y)=0.006 \AA, \mathrm{~S}-\sigma(x)=0.010, \sigma(y)=0.025, \sigma(z)=$ $0.009 \AA$, light atoms $-\sigma(x)=0.030, \sigma(y)=0 \cdot 162, \sigma(z)=$ $0.023 \AA$ A.

The standard deviations of the electron densities $\sigma(\varrho)$ were 1.84 e. \AA^{-2} for $h 0 l$ data, $1 \cdot 16$ e. \AA^{-2} for $h 1 l$ data and 2.72 e. \AA^{-2} for $h k 0$ data.

Table 2. Atomic coordinates

	x / a	y / b	z / c	$x^{\prime}(\AA)$	$y^{\prime}(\AA)$	$z^{\prime}(\AA)$
$\mathrm{Cd}^{c}(\AA)$	0	0.0605	0.250	0	0.494	2.878
$\mathrm{~S}_{\mathrm{I}}$	0.039	0.286	0.088	0.605	2.337	0.953
$\mathrm{~S}_{\text {II }}$	0.153	0.073	0.362	2.375	0.596	3.931
$\mathrm{C}_{\text {I }}$	0.233	0.070	0.267	3.617	0.572	2.713
$\mathrm{C}_{\text {II }}$	0.301	0.040	0.096	4.673	0.327	0.640
$\mathrm{C}_{\text {III }}$	0.369	0.091	0.199	5.728	0.743	1.720
$\mathrm{C}_{\text {IV }}$	-0.009	0.241	-0.032	-0.140	1.969	-0.353
$\mathrm{~N}_{\mathrm{I}}$	0.222	0.033	0.155	3.446	0.270	1.441
$\mathrm{~N}_{\text {II }}$	0.314	0.103	0.296	4.874	0.842	2.922
$\mathrm{~N}_{\text {III }}$	-0.033	0.179	-0.123	-0.512	1.462	-1.365

However, Lindqvist does not consider the deviation from linearity of SCN group he found to be significant, being smaller than that calculated from the standard deviations of atomic positions. In Nitu $(\mathrm{NCS})_{2}$ the NCS group was found to be linear, as it was in $\mathrm{NH}_{4}\left[\mathrm{Cr}(\mathrm{SCN})_{4}\left(\mathrm{NH}_{3}\right)_{2}\right]_{3}^{2} \mathrm{H}_{2} \mathrm{O}$ (Saito, Takeuchi \& Pepinsky, 1955), in $\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{3}(\mathrm{NCS})_{2}$ and in $\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{4}$ (NCS) ${ }_{2}$ (Paraj-Kojic, Antzishkina, Dickareva \& Jukhnov, 1957).

The angle $\mathrm{Cd}^{-\mathrm{S}_{\mathrm{I}}-\mathrm{C}_{\text {IV }}}=109 \cdot 1 \pm 4 \cdot 4^{\circ}$ suggests that the bonds on the S_{I} atoms are tetrahedral. The rather high error in the $\mathrm{Cd}-\mathrm{N}_{\mathrm{III}}^{\prime} \mathrm{C}_{\mathrm{IV}}^{\prime}=143 \pm 12^{\circ}$ angle, makes any interpretation uncertain.

It is particularly interesting to compare the structure of $\operatorname{Cdetu}_{2}(\mathrm{NCS})_{2}$ with that of $\operatorname{Nit} u_{2}(\mathrm{NCS})_{2}$ which is isostructural with $\mathrm{Cd}_{\mathrm{t}}^{2}(\mathrm{NCS})_{2}$. The substitution of thiourea for ethylenethiourea does not limit its consequences to an alteration of the crystal structure due only to steric-hindrance, but the observed modifications are more chemical in nature. In $\mathrm{Cd} t u_{2}(\mathrm{NCS})_{2}$ the coordination around the cadmium atom is also octahedral but in this case the bridges between the coordination polyhedra are constituted by sulphur atoms of thiourea which are forming two coordinative bonds.

The bond angle $\mathrm{Cd}_{-\mathrm{S}_{\mathrm{II}}-\mathrm{C}_{\mathrm{r}}=111 \cdot 6 \pm 1 \cdot 1^{\circ} \text { in Cdetu }{ }_{2}, ~(1)}$ $(\mathrm{NCS})_{2}$ suggests tetrahedral bonds to the $\mathrm{S}_{\text {II }}$ atom, as \left. has been found in ${\mathrm{Ni} t u_{2}}^{(\mathrm{NCS}}\right)_{2}$. The coordination of the NCS groups in Cdetuz $(\mathrm{NCS})_{2}$, which occurs through the ends of the molecule, follows what has been found by Lindqvist (1957a, b). Lindqvist observes that, while with the elements of the first long row of the Periodic Table the metal atom coordinates the nitro-gen-ends of the NCS groups and in the second and third long rows the coordination is through the sulphur-ends, the cadmium atom can coordinate the nitrogen or the sulphur atoms as well. The isostructurality found between $\operatorname{Cdetu}_{2}(\mathrm{NCS})_{2}$ and Pbetu ${ }_{2}$ $(\mathrm{NCS})_{2}$ shows that lead represents an exception to the
previous generalization. The packing distances shorter than $4 \AA$ are:

$$
\begin{aligned}
& \mathrm{N}_{\mathrm{I}}-\mathrm{S}_{\mathrm{I}} \quad=3.55 \pm 0.10 \AA \\
& \mathrm{~N}_{\mathrm{I}}-\mathrm{N}_{\text {III }}^{\prime} \quad=3 \cdot 41 \pm 0.12 \\
& \mathrm{~N}_{\mathrm{I}}-\mathrm{S}_{\mathrm{II}}\left(x, \bar{y}, z-\frac{1}{2}\right) \quad=3.54 \pm 0.05 \\
& \mathrm{C}_{\mathrm{II}}-\mathrm{S}_{\mathrm{II}}\left(x, \bar{y}, z-\frac{1}{2}\right) \quad=3.49 \pm 0.05 \\
& \mathrm{~N}_{\text {II }}-\mathrm{C}_{\text {II }}\left(x, \bar{y}, z+\frac{1}{2}\right) \quad=3.67 \pm 0.08 \\
& \mathrm{C}_{\mathrm{I}}-\mathrm{C}_{\text {II }}\left(x, \bar{y}, z+\frac{1}{2}\right)=3.94 \pm 0.06 \\
& \mathrm{~S}_{\text {II }}-\mathrm{C}_{\text {II }}\left(\frac{1}{2}-x \text {, } \frac{1}{2}+y, \frac{1}{2}-z\right)=3 \cdot 90 \pm 0 \cdot 16 \\
& \mathrm{C}_{\mathrm{I}}-\mathrm{N}_{\mathrm{I}}\left(\frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z\right)=3.94 \pm 0 \cdot 22 \\
& \mathrm{~S}_{\text {I }}-\mathrm{N}_{\text {II }}\left(\frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z\right)=3.63 \pm 0.12 \\
& \mathrm{~N}_{\text {III }}(\bar{x}, 1-y, \bar{z})-\mathrm{C}_{\text {III }}\left(\frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z\right)=3.07 \pm 0 \cdot 14 \\
& \mathrm{~N}_{\text {III }}(\bar{x}, 1-y, \bar{z})-\mathrm{N}_{\text {II }}\left(\frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z\right)=3.05 \pm 0.14
\end{aligned}
$$

The shortest distances observed involve the nitrogen atoms of the NCS groups and of the ethylenethiourea molecules. This indicates that the packing of the chains is based on the formation of hydrogen bonds.

References

Ahmed, F. R. \& Cruiceshank, D. W. J. (1953). Acta Cryst. 6, 385.
Bryden, J. H. (1958). Acta Cryst. 11, 31.
Cochran, W. (1948). J. Sci. Instrum. 25, 253.
Cochran, W. (1951). Acta Cryst. 4, 84.
Cruiceshank, D. W. J. (1949). Acta Cryst. 2, 65.
Lindquist, I. (1957a). Acta Cryst. 10, 29.
Lindqvist, I. \& Strandberg, B. (1957b). Acta Cryst. 10, 173.

Nardelli, M., Braibanti, A. \& Fava, G. (1957). Gazz. Chim. Ital. 87, 1209.
Nardelli, M. \& Chierici, I. (1958). Gazz. Chim. Ital. 88, 284.

Paraj-Koy̌ic, M. A., Antzishkina, A. S., Dickareva, L. M. \& Jukhnov, E. K. (1957). Acta Cryst. 10, 784.

Saito, Y., Takeuchi, Y. \& Pepinsky, R. (1955). Z. Kristallogr. 106, 476.
Scouloudi, H. (1953). Acta Cryst. 6, 651.
Wheatley, P. J. (1953). Acta Cryst. 6, 369.
Wiebenga, E. H. \& Smits, D. W. (1950). Acta Cryst. 3, 265.

Winson, A. J. C. (1942). Nature, Lond. 150, 152.

